### Vapor-Liquid Equilibria for Four Binary Systems at 363.15 K: *N*-Methylformamide + Hexane, + Benzene, + Chlorobenzene, and + Acetonitrile

# Roger A. Harris,<sup>‡</sup> Roland Wittig,<sup>†</sup> Jürgen Gmehling,<sup>\*,†</sup> Trevor M. Letcher,<sup>‡</sup> Demnesh Ramjugernath,<sup>‡</sup> and J. D. Raal<sup>‡</sup>

Department of Industrial Chemistry, University of Oldenburg, P.O. Box 2503, D-26111 Oldenburg, Germany; and Thermodynamics Research Unit, School of Chemical Engineering, University of Natal, Durban 4041, South Africa

In this work experimental VLE data are presented for *N*-methylformamide + hexane, *N*-methylformamide + benzene, *N*-methylformamide + chlorobenzene, and *N*-methylformamide + acetonitrile at 363.15 K. The data were measured using a computer driven static vapor—liquid equilibrium device. The data were modeled with the NRTL excess Gibbs energy ( $g^{\rm E}$ ) model. Activity coefficients at infinite dilution for the low boiling compound were calculated using a differential pressure method and the NRTL equation.

### Introduction

Vapor-liquid equilibrium (VLE) data are essential for the design of separation processes and equipment as well as for the extension of thermodynamic models. In this study isothermal, P-x data were measured at 363.15 K for the four mixtures *N*-methylformamide + hexane, *N*-methylformamide + benzene, *N*-methylformamide + chlorobenzene, and *N*-methylformamide + acetonitrile using a computer-controlled, static apparatus. No literature data are available for *N*-methylformamide + hexane, + chlorobenzene, and + acetonitrile.

### **Experimental Section**

*Materials.* The chemicals were purchased from commercial sources and were purified as previously explained.<sup>1</sup> This included drying over molecular sieves, degassing, and distilling. Final working purities were at least 99.9%.

**Apparatus and Procedures.** VLE data for this study were measured as isothermal P-x data. The equipment used is the same as that used in previous studies<sup>2</sup> and has been described previously.<sup>3,4</sup> The experimental procedure is based on the work of Gibbs and Van Ness.<sup>5</sup>

The motor driven injection pumps were charged with the purified compounds, and the liquids were then pumped into the evacuated VLE cell through automated valves. The VLE cell was maintained at constant temperature by immersing in an oil bath. The overall compositions were determined from the metered quantities of liquid pumped into the cell. Liquid-phase composition ( $x_i$ ) was calculated by solving mass and volume balances while taking into account the phase equilibrium.<sup>3</sup> A summary of the equipment used and the uncertainties in the measured properties are given in Table 1.

### Results

*VLE.* Tables 2–5 list the VLE experimental P-x data. The data are plotted in Figures 1–4.  $P-x_i-y_i$  values were

## Table 1. Measured Parameters, Devices Used, andExperimental Uncertainty

| measure-<br>ment | device                                            | uncertainty                       |
|------------------|---------------------------------------------------|-----------------------------------|
| Т                | Pt 100 (model 1506, Hart Scientific)              | 0.03 K                            |
| Р                | Digiquartz sensor (model 245A,<br>Paroscientific) | 20 Pa +<br>0.0001 ( <i>P</i> /Pa) |
| Xi               | N/A                                               | 0.002                             |

Table 2. VLE Data for the System Hexane (1) +*N*-Methylformamide (2) at 363.15 K

| Xl    | P/kPa  | Xl    | ₽⁄kPa  | Xl    | <i>P</i> /kPa |
|-------|--------|-------|--------|-------|---------------|
| 0.000 | 2.01   | 0.126 | 189.05 | 0.675 | 188.86        |
| 0.002 | 13.51  | 0.152 | 189.06 | 0.736 | 188.88        |
| 0.004 | 22.47  | 0.182 | 189.08 | 0.789 | 188.86        |
| 0.007 | 33.12  | 0.214 | 189.12 | 0.837 | 188.86        |
| 0.010 | 44.93  | 0.248 | 189.14 | 0.879 | 188.85        |
| 0.012 | 56.36  | 0.274 | 188.96 | 0.913 | 188.84        |
| 0.019 | 83.32  | 0.283 | 189.20 | 0.941 | 188.84        |
| 0.026 | 105.96 | 0.309 | 188.93 | 0.959 | 188.82        |
| 0.034 | 129.69 | 0.349 | 188.90 | 0.971 | 188.82        |
| 0.043 | 153.13 | 0.394 | 188.89 | 0.981 | 188.81        |
| 0.053 | 175.07 | 0.443 | 188.88 | 0.988 | 188.74        |
| 0.065 | 188.98 | 0.497 | 188.88 | 0.994 | 188.44        |
| 0.081 | 189.04 | 0.554 | 188.86 | 0.997 | 188.38        |
| 0.102 | 189.05 | 0.614 | 188.86 | 1.000 | 188.05        |

calculated with the NRTL model,<sup>6</sup> and  $y_i$  values were corrected by using the virial equation of state.<sup>6</sup> The calculated liquid phase  $(x_i)$  and vapor phase  $(y_i)$  values are also presented in Figures 1–4. Equation 1 defines the objective function (*F*) which was minimized to regress the NRTL parameters ( $\Delta g_{12}$ ,  $\Delta g_{21}$ , and  $\alpha_{12}$ ) from the experimental data

$$F = \left(\frac{P_{\text{expt}} - P_{\text{calc}}}{P_{\text{expt}}}\right)^2 \tag{1}$$

The regressed NRTL parameters ( $\Delta g_{12}$ ,  $\Delta g_{21}$ , and  $\alpha_{12}$ ) are given in Table 6.

**Infinite Dilution Activity Coefficients.** Infinite dilution activity coefficients ( $\gamma^{\infty}$ ) were determined from the NRTL parameters<sup>6</sup> and also from the pressure differential

<sup>\*</sup> To whom correspondence should be addressed. E-mail: Gmehling@tech.chem.uni-oldenburg.de.

<sup>&</sup>lt;sup>‡</sup> University of Natal.

<sup>&</sup>lt;sup>†</sup> University of Oldenburg.

Table 3. VLE Data for the System Benzene (1) +*N*-Methylformamide (2) at 363.15 K

| Xl    | <i>P</i> /kPa | Xl    | ₽⁄kPa  | Xl    | <i>P</i> /kPa |
|-------|---------------|-------|--------|-------|---------------|
| 0.000 | 1.95          | 0.221 | 82.85  | 0.807 | 129.39        |
| 0.002 | 3.15          | 0.258 | 90.36  | 0.849 | 130.44        |
| 0.004 | 4.46          | 0.297 | 96.99  | 0.886 | 131.41        |
| 0.007 | 5.92          | 0.337 | 102.82 | 0.917 | 132.38        |
| 0.010 | 7.40          | 0.359 | 105.32 | 0.942 | 133.30        |
| 0.012 | 8.74          | 0.378 | 107.84 | 0.961 | 134.26        |
| 0.021 | 13.43         | 0.400 | 109.72 | 0.974 | 135.04        |
| 0.032 | 19.06         | 0.418 | 111.99 | 0.982 | 135.66        |
| 0.046 | 25.55         | 0.444 | 113.66 | 0.989 | 136.18        |
| 0.061 | 32.63         | 0.492 | 117.17 | 0.993 | 136.55        |
| 0.080 | 40.30         | 0.543 | 120.18 | 0.997 | 136.94        |
| 0.101 | 48.47         | 0.596 | 122.75 | 0.999 | 137.15        |
| 0.125 | 56.77         | 0.650 | 124.87 | 1.000 | 137.28        |
| 0.154 | 65.78         | 0.704 | 126.62 |       |               |
| 0.186 | 74.56         | 0.757 | 128.09 |       |               |
|       |               |       |        |       |               |

Table 4. VLE Data for the System Chlorobenzene (1) + N-Methylformamide (2) at 363.15 K

| Xl    | P/kPa | Xl    | P/kPa | Xl    | ₽⁄kPa |
|-------|-------|-------|-------|-------|-------|
| 0.000 | 2.10  | 0.189 | 17.86 | 0.732 | 27.17 |
| 0.002 | 2.34  | 0.223 | 19.39 | 0.786 | 27.44 |
| 0.003 | 2.52  | 0.260 | 20.73 | 0.831 | 27.65 |
| 0.005 | 2.76  | 0.299 | 21.91 | 0.871 | 27.85 |
| 0.008 | 3.18  | 0.330 | 22.77 | 0.906 | 28.03 |
| 0.012 | 3.67  | 0.338 | 22.91 | 0.933 | 28.18 |
| 0.017 | 4.32  | 0.369 | 23.60 | 0.955 | 28.30 |
| 0.024 | 5.20  | 0.378 | 23.73 | 0.970 | 28.36 |
| 0.034 | 6.36  | 0.413 | 24.36 | 0.979 | 28.39 |
| 0.047 | 7.69  | 0.417 | 24.43 | 0.986 | 28.39 |
| 0.062 | 9.15  | 0.460 | 25.03 | 0.991 | 28.38 |
| 0.080 | 10.80 | 0.511 | 25.61 | 0.996 | 28.36 |
| 0.101 | 12.53 | 0.564 | 26.10 | 0.999 | 28.34 |
| 0.127 | 14.37 | 0.620 | 26.52 | 1.000 | 28.33 |
| 0.156 | 16.16 | 0.676 | 26.87 |       |       |
|       |       |       |       |       |       |

Table 5. VLE Data for the System Acetonitrile (1) +*N*-Methylformamide (2) at 363.15 K

| Xį    | P/kPa | Xl    | ₽⁄kPa  | Xl    | P∕kPa  |
|-------|-------|-------|--------|-------|--------|
| 0.000 | 2.13  | 0.286 | 52.47  | 0.841 | 113.04 |
| 0.005 | 3.14  | 0.331 | 58.76  | 0.876 | 116.67 |
| 0.008 | 3.93  | 0.377 | 64.74  | 0.905 | 119.69 |
| 0.013 | 5.03  | 0.423 | 70.38  | 0.929 | 122.37 |
| 0.018 | 6.05  | 0.469 | 75.64  | 0.949 | 124.67 |
| 0.026 | 7.70  | 0.513 | 80.51  | 0.964 | 126.56 |
| 0.041 | 10.82 | 0.554 | 84.93  | 0.976 | 128.04 |
| 0.058 | 14.20 | 0.576 | 87.31  | 0.984 | 129.02 |
| 0.080 | 18.46 | 0.594 | 88.97  | 0.989 | 129.68 |
| 0.105 | 23.09 | 0.622 | 91.93  | 0.992 | 130.17 |
| 0.133 | 28.22 | 0.668 | 96.46  | 0.995 | 130.55 |
| 0.165 | 33.78 | 0.714 | 100.85 | 0.998 | 130.85 |
| 0.200 | 39.59 | 0.759 | 105.10 | 0.999 | 131.01 |
| 0.242 | 46.05 | 0.802 | 109.19 | 1.000 | 131.21 |
|       |       |       |        |       |        |

method.<sup>7</sup> The equation for the NRTL method is given by

$$\ln \gamma_i^{\infty} = \tau_{ii} \exp(-\alpha_{12} \tau_{ij}) + \tau_{ii} \tag{2}$$

The simplified equation for the pressure differential method is

$$\gamma_i^{\infty} = \frac{(P^{\rm E}/x_i x_j)^{\infty}}{P_i^{\rm sat}} + 1 \tag{3}$$

where  $P_i^{\text{sat}}$  is the saturated vapor pressure for component *i* and

$$P^{\rm E} = |P - \sum_{i} X_i P_i^{\rm sat}| \tag{4}$$

where *P* refers to the actual system pressure.



**Figure 1.** Experimental and calculated P-x (y) data for the system hexane (1) + *N*-methylformamide (2) at 363.15 K:  $\bigcirc$ , experimental data; -, NRTL.



**Figure 2.** Experimental and calculated P-x (y) data for the system benzene (1) + *N*-methylformamide (2) at 363.15 K:  $\bigcirc$ , experimental data; -, NRTL.



**Figure 3.** Experimental and calculated P-x (*y*) data for the system chlorobenzene (1) + *N*-methylformamide (2) at 363.15 K:  $\bigcirc$ , experimental data; -, NRTL.

Table 6. Regressed NRTL Parameters for theExperimental VLE Data at 363.15 K

|                                          | $\Delta g_{12}$     | $\Delta g_{21}$                                            |               |
|------------------------------------------|---------------------|------------------------------------------------------------|---------------|
| system                                   | J•mol <sup>−1</sup> | $\overline{\mathbf{J}\boldsymbol{\cdot}\mathbf{mol}^{-1}}$ | $\alpha_{12}$ |
| hexane $(1) + N$ -methylformamide $(2)$  | 8108                | 7378                                                       | 0.373         |
| benzene $(1) + N$ -methylformamide $(2)$ | 6641                | 2306                                                       | 0.497         |
| chlorobenzene (1) +                      | 6220                | 2689                                                       | 0.503         |
| N-methylformamide (2)                    |                     |                                                            |               |
| acetonitrile $(1) + N$ -methyl-          | 2212                | 794.7                                                      | 0.989         |
| formamide (2)                            |                     |                                                            |               |

Determination of the limiting values,  $(P^{E}/x_{i}x_{j})^{\infty}$ , according to the method of Maher and Smith<sup>8</sup> is shown for the *N*-methylformamide + chlorobenzene system in Figure 5. As discussed previously,<sup>9</sup> derivation of  $\gamma^{\infty}$  values from P-xdata is difficult for high boiling substances (such as *N*-methylformamide) in low boiling components. Thus, only



**Figure 4.** Experimental and calculated P-x (*y*) data for the system acetonitrile (1) + *N*-methylformamide (2) at 363.15 K:  $\bigcirc$ , experimental data; -, NRTL.



**Figure 5.** Determination of the limiting values,  $(P^{\mathbb{E}}/x_i x_j)^{\infty}$ , according to the method of Maher and Smith<sup>8</sup> for the chlorobenzene (1) + *N*-methylformamide (2) system.

Table 7.  $\gamma^\infty$  Values for the Four Binary Systems Determined from VLE Data at 363.15 K

| system                                       | $\gamma_1^{\infty}$ <sup>a</sup> | $\gamma_1^{\infty \ b}$ |
|----------------------------------------------|----------------------------------|-------------------------|
| hexane $(1) + N$ -methylformamide $(2)$      | 30.9                             | 42.2                    |
| benzene (1) + $N$ -methylformamide (2)       | 4.5                              | 4.3                     |
| chlorobenzene (1) + $N$ -methylformamide (2) | 5.1                              | 5.0                     |
| acetonitrile (1) $+ N$ -methylformamide (2)  | 1.9                              | 1.7                     |

<sup>a</sup> Calculated using eq 2. <sup>b</sup> Calculated using eq 3.

 $\gamma^{\infty}$  values with *N*-methylformamide as the solvent are considered. Table 7 compares the  $\gamma^{\infty}$  values calculated by these two methods for the four binary systems.

### Conclusions

In this work experimental VLE data are presented for *N*-methylformamide + hexane, *N*-methylformamide + benzene, *N*-methylformamide + chlorobenzene, and *N*methylformamide + acetonitrile at 363.15 K. The NRTL model fits the pressure data within 1.5 kPa for the systems



**Figure 6.** Pressure difference ( $\Delta P$ ) between actual pressures and model pressures for the *N*-methylformamide (2) + benzene (1), + chlorobenzene (1), and + acetonitrile (1) systems at 363.15 K.

N-methylformamide + benzene, + chlorobenzene, and + acetonitrile, as shown in Figure 6. The model does not fit the N-methylformamide + hexane system well; however, of the models assessed, it gave the best fit. The N-methylformamide + hexane system forms two liquid phases, as is indicated in Figure 1.

 $\gamma^{\circ}$  values are presented for all four systems, calculated both from the fitted NRTL equation and from the generally more reliable method of Maher and Smith.<sup>8</sup> The two methods give similar results for the *N*-methylformamide + benzene, + chlorobenzene, and + acetonitrile systems, as shown in Table 7.

### Acknowledgment

The technical assistance of Ms. S. Laue is gratefully acknowledged.

#### **Literature Cited**

- Fischer, K.; Gmehling, J. P-x and γ<sup>∞</sup> Data for the Different Binary Butanol–Water Systems at 50 °C. J. Chem. Eng. Data 1994, 39, 309–315.
- (2) Horstmann, S.; Gmehling, J. Vapor–Liquid Equilibria and Excess Enthalpy Data for the Binary System Propionic Aldehyde + 2-Methyl-2-butanol at 333.15 K. *J. Chem. Eng. Data* 2001, 46, 1487–1489.
- (3) Rarey, J.; Gmehling, J. Computer Operated Differential Static Apparatus for the Measurement of Vapor – Liquid Equilibrium Data. *Fluid Phase Equilib* **1993**, *83*, 279–287.
- (4) Rarey, J.; Horstmann, S.; Gmehling, J. Vapor-Liquid Equilibria and Vapor Pressure Data for the Systems Ethyl *tert*-Butyl Ether + Ethanol and Ethyl *tert*-Butyl Ether + Water. J. Chem. Eng. Data 1999, 44, 532–538.
- (5) Gibbs, R. E.; Van Ness, H. C. Vapor Liquid Equilibria from Total Pressure Measurements. A New Apparatus. *Ind. Eng. Chem. Fundam.* **1972**, *11*, 410–413.
- (6) Raal, J. D.; Mühlbauer, A. L. *Phase Equilibria: Measurement and Computation*, Taylor & Francis: Washington, DC, 1998.
- (7) Raal, J. D.; Ramjugernath, D. Rigorous Characterization of Static and Dynamic Apparatus for Measuring Limiting Activity Coefficients. *Fluid Phase Equilib.* 2001, 187–188, 473–487.
- (8) Maher, P. J.; Smith, B. D. Infinite Dilution Activity Coefficient Values from Total Pressure VLE Data. *Ind. Eng. Chem. Fundam.* 1979, 18, 354–357.
- (9) Fischer, K.; Gmehling, J. Vapor-liquid equilibria, activity coefficients at infinite dilution and heats of mixing for mixtures of *N*-methyl pyrrolidone-2 with C5 or C6 hydrocarbons and for hydrocarbon mixtures. *Fluid Phase Equilib.* **1996**, *119*, 113–130.

Received for review July 15, 2002. Accepted December 2, 2002. The financial assistance of the joint research and development project, funded by the Forschungszentrum Jülich GmbH (Germany) and the National Research Foundation (South Africa), which made this work possible, is gratefully acknowledged.

### JE020130I